JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech I Year II Semester Examinations, May - 2019

ENGINEERING MECHANICS
(Common to CE, ME, MCT, MMT, AE, MIE, PTM)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) State varignon's theorem.

> [2]
b) Distinguish types of friction.
[2]
c) What is product of inertia illustrate with example.
[2]
d) State the principle of impulse-momentum.
e) Write work energy equation for rotating bodies.
f) Discuss the equations of equilibrium for coplanar system of forces.
g) State and explain pappus theorem II.
h) What is perpendicular axis theorem?
i) Define normal and tangential accelerations of a particle.
j) Explain D'Alembert's principle in plane motion.

PART-B

(50 Marks)
2.a) Find the magnitude diforces F_{1} and F_{2} if they act at right angle, their resultant is $\sqrt{34} \mathrm{~N}$. If they act at 60°, 1 , ir resultant is 7 N .
b) A 75 N verticalforce is applied to the end of a pole 3 m long which is attached to a shaft at O as shorin figure 1 . Determine:
i) The mgivent of the 75 N force about O ,
ii) The magnitude of the horizontal force applied at A which creates the same moment about O and
iii) The smallest force applied at A which creates the same moment about O ,
iv) How far from the shaft at O a 200 N vertical force must act to create the same moment about O ?

Figure: 1
OR
3.a) To move a boat uniformly along the river at a given speed, a resultant force $R=520 \mathrm{~N}$ is required. Two men pull with force P and Q , by means of ropes, to do this. The ropes makes an angle of 30° and 40° respectively with the sides of the river as shown in figure 2. Determine the force P and $\mathrm{Q}, \mathrm{I} \oplus_{1}=30^{\circ}$, find the value $\mathrm{of} \theta_{2}$ such that the force in the rope Q is minimum. What is the minimum force Q ?

Figure: 2
b) A 30 kg collar may slide on frictionless vertical rod and is connected to a 34 kg counter weight as shown in figure 3. Find the value of h for which the system is in equilibrium.
[5+5]

Figure: 3
4.a) Two blocks W_{1} and W_{2} which are connected by a horizontal bar AB are supported on rough planes as shown in figure 4 . The coefficient of friction for the block $\mathrm{A}=0.4$. The angle of friction for the block B is 20^{0}. Find the smallest weight W_{1} of the block A for which the equilibrium cap exist, if $\mathrm{W}_{2}=2250 \mathrm{~N}$.

Figure: 4
b) A thin homogeneous semi circular plate of radius r is suspended from its corner A as shown in figure 5. Find the angle made by its straight edge AB with the vertical. [5+5]

Figure: 5

OR

5.a) Two blocks W_{1} and W_{2} resting on two inclined planes, are connected by a horizontal bar AB as shown in figure 6 . If W_{1} equals 1000 N , determine the maximum value of W_{2} for which the equilibrium can exist. The angle of limiting friction is 20° at all rubbing faces.

Figure: 6
b) Find the coordinates of the centroid of the area shown in figure 7. All dimensions are in mm .

Figure: 7
6.a) Find the MI about the centroidal axis in figure 8.

Figure: 8
b) Determine the mas moment of inertia of a circular plate of uniform thickness, about centroidal axes.

OR

7. Find the about the centroidal axis and about xy axis for figure 9 shown. All dimensiduris are in mm .

Figure: 9
8.a) A railway car is moving with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The diameter of the wheel is 1 m . The wheel is running on a straight rail without slipping. Find the velocity of the point on the circumference at 60° in the clockwise direction from the top at any instant.
b) A 600 mm diameter flywheel is brought uniformly from rest to a speed of 350 rpm in 20 seconds. Determine the velocity and acceleration of a point on the rim 2 seconds after starting from rest.

OR

9.a) Find the least initial velocity with which a projectile is to be projected so that it clears a wall 4 m height located at a distance of 5 m , and strikes the ground at a distance 4 m beyond the wall as shown in figure 10. The point of projection is at the same level as the foot of the wall.

Figure: 10
b) A ball drops from the ceiling of a room and after rebounding twice from the floor reaches a height equal to one-fourth of the height of the ceiling. Show that the coefficient of restitution is 0.707 .
10.a) A body weighing 20 N is projected up a 20^{0} inclined plane with a velocity of $12 \mathrm{~m} / \mathrm{s}$, coefficient of friction is 0.15 . Find the maximum distance the body will move up the inclined plane.
b) Two blocks of weights P and Q are connected by a flexible but inextensible cord and supported as shown in figure 11. If the coefficient of friction between the block P and the horizontal surface is m and all other friction is negligible, find (i) the acceleration of the system and (ii) the tensile force S in the cord. The following numerical data are given: $\mathrm{P}=54 \mathrm{~N} ; \mathrm{Q}=25 \mathrm{~N} ; \mu=1 / 3$.

Figure: 11
OR
11. Determine the constant force P that will give the system of bodies shown in Figure 12. A velocity of $3 \mathrm{~m} / \mathrm{sec}$ after moving 4.5 m from rest. Coefficient of friction between the blocks and the plane is 0.3 . Pulleys are smooth.
[10]

Figure: 12

